555/556 Astable
555 astable output, a square wave (Tm and Ts may be different) |
555 astable circuit |
T = 0.7 × (R1 + 2R2) × C1 and f = | 1.4 |
(R1 + 2R2) × C1 |
T = time period in seconds (s)
f = frequency in hertz (Hz)
R1 = resistance in ohms ()
R2 = resistance in ohms ()
C1 = capacitance in farads (F)
The time period can be split into two parts: T = Tm + Ts
Mark time (output high): Tm = 0.7 × (R1 + R2) × C1
Space time (output low): Ts = 0.7 × R2 × C1
Many circuits require Tm and Ts to be almost equal; this is achieved if R2 is much larger than R1.
For a standard astable circuit Tm cannot be less than Ts, but this is not too restricting because the output can both sink and source current. For example an LED can be made to flash briefly with long gaps by connecting it (with its resistor) between +Vs and the output. This way the LED is on during Ts, so brief flashes are achieved with R1 larger than R2, making Ts short and Tm long. If Tm must be less than Ts a diode can be added to the circuit as explained under duty cycle below.
Choosing R1, R2 and C1
555 astable frequencies | |||
C1 | R2 = 10k R1 = 1k |
R2 = 100k R1 = 10k |
R2 = 1M R1 = 100k |
0.001µF | 68kHz | 6.8kHz | 680Hz |
0.01µF | 6.8kHz | 680Hz | 68Hz |
0.1µF | 680Hz | 68Hz | 6.8Hz |
1µF | 68Hz | 6.8Hz | 0.68Hz |
10µF | 6.8Hz | 0.68Hz (41 per min.) | 0.068Hz (4 per min.) |
- Choose C1 to suit the frequency range you require (use the table as a guide).
- Choose R2 to give the frequency (f) you require. Assume that R1 is much smaller than R2
(so that Tm and Ts are almost equal), then you can use:
R2 = 0.7 f × C1 - Choose R1 to be about a tenth of R2 (1k min.) unless you want the mark time Tm to be significantly longer than the space time Ts.
- If you wish to use a variable resistor it is best to make it R2.
- If R1 is variable it must have a fixed resistor of at least
1k in series
(this is not required for R2 if it is variable).
Astable operation
With the output high (+Vs) the capacitor C1 is charged by current flowing through R1 and R2. The threshold and trigger inputs monitor the capacitor voltage and when it reaches 2/3Vs (threshold voltage) the output becomes low and the discharge pin is connected to 0V. The capacitor now discharges with current flowing through R2 into the discharge pin. When the voltage falls to 1/3Vs (trigger voltage) the output becomes high again and the discharge pin is disconnected, allowing the capacitor to start charging again.This cycle repeats continuously unless the reset input is connected to 0V which forces the output low while reset is 0V.
An astable can be used to provide the clock signal for circuits such as counters.
A low frequency astable (< 10Hz) can be used to flash an LED on and off, higher frequency flashes are too fast to be seen clearly. Driving a loudspeaker or piezo transducer with a low frequency of less than 20Hz will produce a series of 'clicks' (one for each low/high transition) and this can be used to make a simple metronome.
An audio frequency astable (20Hz to 20kHz) can be used to produce a sound from a loudspeaker or piezo transducer. The sound is suitable for buzzes and beeps. The natural (resonant) frequency of most piezo transducers is about 3kHz and this will make them produce a particularly loud sound.
Duty cycle
The duty cycle of an astable circuit is the proportion of the complete cycle for which the output is high (the mark time). It is usually given as a percentage. For a standard 555/556 astable circuit the mark time (Tm) must be greater than the space time (Ts), so the duty cycle must be at least 50%:Duty cycle = | Tm | = | R1 + R2 |
Tm + Ts | R1 + 2R2 |
555 astable circuit with diode across R2 |
Tm = 0.7 × R1 × C1 (ignoring 0.7V across diode)
Ts = 0.7 × R2 × C1 (unchanged)
Duty cycle with diode = | Tm | = | R1 |
Tm + Ts | R1 + R2 |
Use a signal diode such as 1N4148.
No comments:
Post a Comment