Switch-Mode Battery Charger Circuit
Fast, High Effi ciency, Standalone NiMH/NiCd Battery
Charging Circuit
Figure 1 shows a fast, 2A charger featuring the
high effi ciency LTC4011 550kHz synchronous buck
converter. The LTC4011 simplifi es charger design by
integrating all of the features needed to charge Ni-based
batteries, including constant current control circuitry,
charge termination, automatic trickle and top off
charge, automatic recharge, programmable timer,
PowerPath control and multiple status outputs. Such a
high level of integration lowers the component count,
enabling a complete charger to occupy less than 4cm2
of board area.
high effi ciency LTC4011 550kHz synchronous buck
converter. The LTC4011 simplifi es charger design by
integrating all of the features needed to charge Ni-based
batteries, including constant current control circuitry,
charge termination, automatic trickle and top off
charge, automatic recharge, programmable timer,
PowerPath control and multiple status outputs. Such a
high level of integration lowers the component count,
enabling a complete charger to occupy less than 4cm2
of board area.
Battery Charger Delivers 2.5A With >96% EfficiencyBattery chargers are usually designed without regard for
efficiency, but the heat generated by low-efficiency
chargers can present a problem. For those applications,
the charger of Figure 1 delivers 2.5A with efficiency as
high as 96%. It can charge a battery of one to six cells
while operating from a car battery.
Figure 1. Modified feedback paths transform this switch-mode
power-supply circuit for notebook computers into a
high-efficiency battery charger.
No comments:
Post a Comment